
ARGONNE NATIONAL LABORATORY
9700 South Cass Avenue
Argonne, Illinois 60439

Solving Mixed-Integer Nonlinear Programs by QP-Diving

Ashutosh Mahajan, Sven Leyffer, and Christian Kirches

Mathematics and Computer Science Division

Preprint ANL/MCS-P2071-0312

March 26, 2012

This work was supported by the Office of Advanced Scientific Computing Research, Office of Science, U.S. Department

of Energy, under Contract DE-AC02-06CH11357.

Contents

1 Introduction 1

2 QP-Diving for Mixed-Integer Nonlinear Programs 3

3 Extensions of QP-Diving 7

4 Numerical Experiments 9
4.1 Extended Performance-Profiles . 9
4.2 Computational Performance of QP-Diving . 11

5 Conclusions and Future Work 13

A Numerical Results 20

ii

Solving Mixed-Integer Nonlinear Programs by QP-Diving∗

Ashutosh Mahajan,† Sven Leyffer,‡ and Christian Kirches§

March 26, 2012

Abstract

We present a new tree-search algorithm for solving mixed-integer nonlinear programs (MINLPs).
Rather than relying on computationally expensive nonlinear solves at every node of the branch-
and-bound tree, our algorithm solves a quadratic approximation at every node. We show
that the resulting algorithm retains global convergence properties for convex MINLPs, and we
present numerical results on a range of test problems. Our numerical experience shows that
the new algorithm allows us to exploit warm-starting techniques from quadratic program-
ming, resulting in a reduction in solve times for convex MINLPs by orders of magnitude on
some classes of problems.

Keywords: Mixed-Integer Nonlinear Programming, Sequential Quadratic Programming.

AMS-MSC2010: 90C11, 90C30, 90C55.

1 Introduction

We solve mixed-integer nonlinear programming (MINLP) problems of the form
minimize

x
f(x),

subject to c(x) ≤ 0,

x ∈ X,
xi ∈ Z, ∀i ∈ I,

(1.1)

where f : Rn → R and c : Rn → Rm are twice continuously differentiable convex functions,
X ⊂ Rn is a bounded polyhedral set, and I ⊆ {1, . . . , n} is the index set of integer variables. We
also denote by xI the subvector of integer variables, and we refer to problem (1.1) as a convex
MINLP.
∗Preprint ANL/MCS-P2071-0312
†Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439,

mahajan@mcs.anl.gov.
‡Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439,

leyffer@mcs.anl.gov.
§Interdisciplinary Center for Scientific Computing (IWR), Ruprecht-Karls-Universität Heidelberg, 69120 Heidelberg,

Germany, christian.kirches@iwr.uni-heidelberg.de.

1

2 Ashutosh Mahajan, Sven Leyffer, and Christian Kirches

MINLPs arise in a wide variety of applications, such as the efficient management of electricity
transmission (Bacher, 1997; Momoh et al., 1997), including transmission expansion (Romero et al.,
2002; Garver, 1997), transmission switching (Bartholomew et al., 2008; Hedman et al., 2008), and
contingency analysis and blackout prevention of electric power systems (Bienstock and Mattia,
2007; Donde et al., 2005). MINLPs also arise in the design of water distribution networks (Bragalli
et al., 2006; Karuppiah and Grossmann, 2006), operational reloading of nuclear reactors (Quist
et al., 1998), minimization of the environmental impact of utility plants (Eliceche et al., 2007), wire-
less bandwidth allocation (Bhatia et al., 2006; Sheikh and Ghafoor, 2010; Costa-Montenegro et al.,
2007), selective filtering (Sinha et al., 2002; Soleimanipour et al., 2002), network topology design
(Bertsekas and Gallager, 1987; Boorstyn and Frank, 1977; Chi et al., 2008), optical network per-
formance optimization (Elwalid et al., 2006), portfolio optimization (Bienstock, 1996; Jobst et al.,
2001), block layout design in the manufacturing and service sectors (Castillo et al., 2005), and in-
tegrated design and control of chemical processes (Flores-Tlacuahuac and Biegler, 2007). Recent
novel applications include the optimal response to catastrophic oil spills such as the Deepwater
oil spill in the Gulf of Mexico (You and Leyffer, 2010, 2011), minimum-cost designs for reinforced
concrete structures that satisfy building code requirements (Guerra et al., 2009), and optimal re-
sponse to a cyber attack (Goldberg et al., 2012; Altunay et al., 2011). More applications and back-
ground material can be found in monographs and survey papers (Floudas, 1995; Grossmann and
Kravanja, 1997; Grossmann, 2002; Lee and Leyffer, 2011).

Methods for MINLP include nonlinear branch-and-bound (Dakin, 1965; Gupta and Ravin-
dran, 1985), outer approximation (Duran and Grossmann, 1986; Fletcher and Leyffer, 1994), ex-
tended cutting-plane method (Westerlund and Pettersson, 1995), Benders decomposition (Geof-
frion, 1972), and branch-and-cut methods (Stubbs and Mehrohtra, 2002; Quesada and Grossmann,
1992). These algorithmic developments have resulted in a number of robust implementations
of branch-and-bound MINLP-BB (Leyffer, 1998) and SBB (Bussieck and Drud, 2001); the hybrid
solver BONMIN (Bonami et al., 2008); the branch-and-cut solver FilMINT (Abhishek et al., 2010);
and the new toolkit MINOTAUR (Mahajan et al., 2011).

In this paper, we present a new variant of nonlinear branch-and-bound. Our main motivation
is the lack of hot-start capabilities in nonlinear solvers. We loosely define a hot-start as a solve
that does not require any factorizations but takes advantage of factorizations at the parent node
and rank-one updates. In fact, it is almost impossible to effectively hot-start any NLP solver. This
is in stark contrast to the situation in linear programming (LP), where factors of the LP basis are
readily available and can be used to re-solve LPs. The main reason why there are no hot-starts
for NLP solvers is that the factors are outdated as soon as a step is taken because the Hessian and
Jacobian matrices are nonlinear and not constant. This lack of hot-starts affects both active-set and
interior-point methods and has a negative effect on the efficiency of nonlinear branch-and-bound
solvers compared with LP-based solvers (Quesada and Grossmann, 1992). We illustrate this point
in Table 1. The table shows the CPU times for a full sweep of strong-branching (Dribeek, 1966)
re-solves for a small number of representative MINLP problems. In the table, No. Ints gives the
number of integer variables, and NLP, QP-Cold, and QP-Hot give the CPU time for the cumulative

Solving MINLPs by QP-Diving 3

strong-branching solves, where NLP refers to re-solving NLPs, QP-Warm refers to taking one QP-
step of a sequential quadratic programming (QP) method, and QP-Hot refers to QP solves that
reuse the previous basis factors. These experiments were carried out with a version of MINLP-
BB (Fletcher and Leyffer, 2005) using filterSQP (Leyffer, 1998; Fletcher and Leyffer, 1998) as the
nonlinear solver and BQPD (Fletcher, 1995) as the QP solver. Re-using the factors clearly provides
a significant advantage, an observation consistent with recent results on inexact strong branching
(Bonami et al., 2011).

Table 1: Comparison of NLP and QP strong branching times.

Problem No. Ints NLP QP-Cold QP-Hot
stockcycle 480 4.08 3.32 0.532
RSyn0805H 296 78.7 69.8 1.94
SLay10H 180 18.0 17.8 1.25
Syn30M03H 180 40.9 14.7 2.12

The results in Table 1 motivate us to consider a nonlinear branch-and-bound algorithm that
exploits the QP solver’s hot-start capabilities as much as possible. Our approach is related to
early branching ideas (Borchers and Mitchell, 1994; Leyffer, 2001) but provides a more radical
break with traditional branch-and-bound techniques. In particular, our new approach exploits
hot-starting techniques of QP solvers such as BQPD (Fletcher, 1995), whereas the early branching
approach just uses cold starts to solve updated QPs, corresponding to QP-Cold in Table 1.

The remainder of this paper is organized as follows. In Section 2, we describe the proposed
new branch-and-bound algorithm, and in Section 3 discuss extensions. In Section 4 we present an
implementation of our idea in MINOTAUR (Mahajan et al., 2011), a toolkit for solving MINLPs.
We compare our approach to a standard implementation of branch-and-bound on a range of test
problems from the literature.

2 QP-Diving for Mixed-Integer Nonlinear Programs

We propose a new algorithm for MINLPs that is based on the traditional branch-and-bound ap-
proach but no longer requires the solution of NLP subproblems at every node. Instead, we observe
that it is sufficient to solve QP approximations at most nodes. We expect our new algorithm to
benefit from the savings shown in Table 1 by searching the tree using QP solves that can be hot-
started. We show below how to adjust the branch-and-bound rules to ensure convergence for
convex MINLPs. In particular, we indicate how we need to handle infeasible QPs and those with
integer solutions, and we show how bounds can be exploited during the tree search.

Our algorithm starts by solving the NLP relaxation of (1.1). If the relaxation is infeasible, so
is the MINLP. If the solution is integer, then we have also solved the MINLP. Otherwise, we let

4 Ashutosh Mahajan, Sven Leyffer, and Christian Kirches

the solution of the root node be x̂, and we construct a QP approximation around x̂, denoted by
(QP(x̂, l, u)). A short graphical description of our algorithm compared with standard branch-and-
bound is given in Figure 1.

Figure 1: Illustration of QP-diving for MINLPs. The left image shows a traditional nonlinear
branch-and-bound solver that traverses the tree by solving NLPs. The right image shows a mixed
tree with nonlinear solves (black) and QP solves (purple).

A node in the branch-and-bound tree is uniquely defined by a set of bounds, (l, u), on the
integer variables. At every node (l, u) of the branch-and-bound tree, we define the following QP
approximation,

minimize
x,η

η + 1
2(x− x̂)T Ĥ(x− x̂)

subject to ĉ+∇ĉT (x− x̂) ≤ 0

f̂ +∇f̂T (x− x̂) ≤ η
η ≤ U − ε
x ∈ X, l ≤ xI ≤ u,

(QP(x̂, l, u))

where Ĥ approximates the Hessian of the Lagrangian at x̂. At the root node we have l = −∞ and
u = ∞. The motivation for adding the variable η and equivalently rewriting the linear objective
as a constraint will be explained below. We also define the NLP relaxation at a node (l, u) as

minimize
x

f(x)

subject to c(x) ≤ 0

x ∈ X, l ≤ xI ≤ u.
(NLP(l, u))

We can now describe the rules of the new tree-search algorithm.

Infeasible Nodes. The convexity of the constraints c(x) ≤ 0 implies that their linearizations are
outer approximations of the feasible set. Thus, if these linearizations are infeasible in (QP(x̂, l, u)),
it follows that (NLP(l, u)) is also infeasible, and the node can be pruned.

Solving MINLPs by QP-Diving 5

Upper Bounds on QP Nodes. We note that, in general, a QP approximation can both under-
estimate and overestimate a nonlinear objective, for example, the quadratic approximation of
f : R → R = −

√
x, at x = 1 underestimates f(0) but overestimates f(2). Hence, we cannot

prune nodes based on the objective function value of QP. However, we can borrow a trick from
outer approximation (Duran and Grossmann, 1986) and replace the linear part of the QP objec-
tive by a new variable, η. We linearize the objective around x̂ and then add the following two
inequalities to the QP:

η ≤ U − ε and η ≥ f̂ +∇f̂T (x− x̂), (2.2)

where U is the upper bound that is updated during the tree search (see next paragraph) and ε > 0

is the optimality tolerance. Adding (2.2) to the QP ensures that we can possibly detect whether a
node is dominated by an upper bound. Whenever a QP is infeasible and (2.2) is either active or
violated at the solution of the corresponding phase-1 problem, the node can be pruned because
it would exceed the upper bound. In practice, we do not distinguish infeasible problems due to
upper bounds or constraint inconsistency.

Integer Feasible Nodes. If the solution of (QP(x̂, l, u)) is integral, then we must solve (NLP(l, u)),
because the solution of the QP is, in general, not a solution of the NLP. If the solution of (NLP(l, u))
is integral, then we either obtain a new upper bound or prune the node because its solution is
dominated by the incumbent.

Branching. If the solution x′ of (QP(x̂, l, u)) or (NLP(l, u)) is feasible but not integral, then we
branch on any nonintegral variable, say x′i. The branching can be done in ways similar to those
used in mixed-integer linear programming (Achterberg et al., 2004). Next, we define the branching
subroutine that adds two new child problems to the stack of unsolved ones.

Subroutine: S ← BranchOnVariable (x′i, l, u,S) // Branch on a non-integral x′i for i ∈ I
Set u−i = bx′ic, l− = l and l+i = dx′ie, u+ = u.
Add QP(x̂, l−, u−) and QP(x̂, l+, u+) to S = S ∪ {QP(x̂, l−, u−),QP(x̂, l+, u+)}.

Only when we find an integer point do we need to solve an NLP problem. The remainder of
the tree is searched by using QPs. In particular, it follows that the Hessian and Jacobian matrices
remain unchanged during the tree search, thus allowing us to take advantage of the factorization
of the augmented system matrix during the QP solves. This observation motivates the term QP-
diving, because most savings are realized during dives down the tree when we add bounds to the
QP. On the other hand, when we backtrack, it is typically more efficient to refactor the augmented
system because the dense reduced Hessian matrix changes significantly. The complete QP-diving
branch-and-bound algorithm is described in Algorithm 1. Proposition 2.1 formally establishes
convergence of this algorithm for convex MINLPs.

6 Ashutosh Mahajan, Sven Leyffer, and Christian Kirches

QP-Diving for MINLP
Choose a tolerance ε > 0, and set U =∞.
Initialize the stack of open problems S = ∅.
Solve the NLP relaxation of (1.1), and let the solution be x̂.
Add (QP(x̂,−∞,∞)) to the stack: S = S ∪ {QP(x̂,−∞,∞)}.
while S 6= ∅ do

Remove a problem (QP(x̂, l, u)) from the stack: S = S − {QP(x̂, l, u)}.
Solve (QP(x̂, l, u)) and let its solution be x′.
if (QP(x̂, l, u)) is infeasible then

Node can be pruned: infeasible or dominated by upper bound.
else if x′I integral then

Solve (NLP(l, u)) and let its solution be x̃.
if (NLP(l, u)) infeasible or f̃ > U then

Node can be pruned: infeasible or dominated by upper bound.
else if x̃I integral then

Update incumbent solution: U = f̃ , x∗ = x̃

else
BranchOnVariable(x̃i, l, u,S)

else
BranchOnVariable(x′i, l, u,S)

Algorithm 1: QP-diving for MINLP

Proposition 2.1. Consider solving (1.1) by using Algorithm 1. Assume that the problem functions f and
c are convex and twice continuously differentiable, and that X is a bounded polyhedral set. Then, it follows
that Algorithm 1 terminates at an optimal solution after searching a finite number of nodes or with an
indication that (1.1) has no solution.

Proof. The proof is similar to that of convergence of nonlinear branch-and-bound for convex
MINLPs. We first observe that every branching step splits the parent problem into two child
nodes and that the union of the feasible sets of the two child nodes contains all integer feasible
points of the parent node. Our assumption that X is a bounded and polyhedral set ensures that
the branching process is finite. As long as we branch, we create more subproblems, but we do not
eliminate any node that might contain the solution. Hence, we need to consider only what hap-
pens when nodes are pruned and show that we cannot remove a node that contains the optimal
solution. To this end, we consider the following two cases.

Case (i): QP at a node, (QP(x̂, l, u)), is infeasible. The convexity of f(x) and c(x) implies that the
linearizations are outer approximations, and it therefore follows that either (NLP(l, u)) is infeasible
or its solution is dominated by the upper bound, U . In both cases, the node was pruned correctly.

Case (ii): x′I is an integral solution of (QP(x̂, l, u)), and we solve (NLP(l, u)) letting the solution
be denoted by x̃. If (NLP(l, u)) is infeasible or if f(x̃) > U , then we prune the node because no

Solving MINLPs by QP-Diving 7

better solution can be found in this subtree. Otherwise, if x̃I is integral, then we obtain a new
incumbent and also prune this node. If x̃I is not integral, then we choose an integer variable and
branch on it. 2

The proof shows that in effect it does not matter what problem we solve at intermediate nodes
as long as infeasibility of linear constraints is detected correctly (which is similar in spirit to the
algorithm of Quesada and Grossmann (1992)). Because our original problem is nonlinear, we
cannot rely on the solution of the QP to provide an upper bound or to even be feasible in (1.1).
Hence, we must solve (NLP(l, u)) at a node where (QP(x̂, l, u)) is integer feasible.

It may happen, however, that even though the solution to (QP(x̂, l, u)) is integer, the solution
of (NLP(l, u)) is fractional; that is why we must branch after solving this NLP. This mechanism,
however, has the side effect that the solution of (QP(x̂, l, u)) will be feasible in one of the child
nodes on (NLP(l, u)). This observation does not contradict the finite termination of QP-diving (we
would simply branch again after another NLP).

3 Extensions of QP-Diving

Even though Algorithm 1 is finite in theory, several concerns exist about its performance. We
discuss these concerns in this section, together with possible remedies to mitigate their effect.

1. Larger Search Trees. In our numerical results we observe that the search tree generated
by QP-diving can be orders of magnitude larger than the search tree required by nonlin-
ear branch-and-bound. There are three reasons for this effect. First, at some nodes, where
(NLP(l, u)) is infeasible or its lower bound is higher than the incumbent value, the QP ap-
proximation (QP(x̂, l, u)) may be feasible. Second, in cases where the solution of (QP(x̂, l, u))
is integral, (NLP(l, u)) may not be integral, and we branch on its solution. This implies that
the solution of (QP(x̂, l, u)) may be feasible in one of the child nodes on (NLP(l, u)). Third,
whenever we obtain a new upper bound by solving an NLP, the only way we can exploit
this bound is by updating U for all QPs on the search tree. In particular, we cannot prune
any nodes on the tree by comparing the QP objective value with the new upper bound.

2. Accuracy of the QP Approximation. The QP approximation is likely to change significantly
as we search the tree. In particular, the active nonlinear constraints will change as binary
variables switch units on and off. We have observed that many multipliers of the nonlinear
constraints are zero at the root node, resulting in a Hessian approximation that takes only
partial nonlinear information into account. In addition, the linearizations clearly change as
we move down tree.

We can reduce the tree size by tightening the QP approximations. If the solution to (QP(x̂, l, u)),
say x′, violates the nonlinear constraints

c(x) ≤ 0 or f(x) ≤ η (3.3)

8 Ashutosh Mahajan, Sven Leyffer, and Christian Kirches

by more than a certain (predetermined) value, then we add an outer approximation cut to separate
x′ and ensure that it will not be feasible in any QP in the corresponding subtree. This approach is
similar to that of Quesada and Grossmann (1992) and Abhishek et al. (2010). Thus, we add cuts of
the form

η ≥ f (k) +∇f (k)T (x− x(k)) (3.4)

0 ≥ c(k) +∇c(k)T (x− x(k)) (3.5)

for some k = 1, . . . ,K. We add these inequalities in our algorithm for points obtained after solving
NLPs and QPs. However, one concern is that this approach increases the size and solution cost of
the QP. We therefore add only those constraints that are either binding or are violated. When new
constraints are added, we can still hot-start BQPD. In our implementation, however, we prefer to
reload the problem and provide the previous solution as the starting point.

Another concern is that when we add linearizations to tighten, the Hessian matrix is no longer
consistent. In particular, η now becomes a piecewise linear function involving several supporting
hyperplanes to f(x) from previous approximation points. This piecewise nature should also be
reflected in the Hessian. We can achieve this goal by updating the Hessian matrix to construct a
convex combination of previous Hessians

H =

K∑
k=1

λkH
(k), where

K∑
k=1

λk = 1,

where H(k) is the Hessian of the Lagrangian at x(k) and where λk ≥ 0 are the QP multipliers. We
regard practical rules for creating a new QP or updating the Hessian as an important aspect of
future work.

Two approaches can be used to address the accuracy of the QP approximation. To tackle the
difficulty arising when dual multipliers of all nonlinear constraints are zero, we change all the
multipliers at zero to a small, fixed, specific positive value. The correctness of the algorithm is not
affected by changing the multipliers as long as they are nonnegative. We capture second-order
information about the constraints by this process, which would be lost otherwise. To address the
difficulty accuracy of the linear and quadratic approximation, we can update the QP approxima-
tions during the tree search. For example, after backtracking we can update the NLP and create
a new QP approximation about the solution of that QP. However, updating the QP in this way
would mean that we can no longer use hot-starts, and we have therefore not implemented this
approach.

We note that all extensions retain the convergence properties of the basic algorithm that rely
only on finiteness of the tree search and convexity of the problem functions. Next, we present
numerical comparisons of our algorithm with regular branch-and-bound methods.

Solving MINLPs by QP-Diving 9

4 Numerical Experiments

We have implemented QP-diving in MINOTAUR (Mahajan et al., 2011), a flexible toolkit written in
C++ for solving MINLP problems. We compare compare QP-diving with two branch-and-bound
versions of BONMIN (Bonami et al., 2008), namely, using IPOPT (Wächter and Biegler, 2006) and
filterSQP (Fletcher and Leyffer, 1998) as NLP solvers. One benefit of using QP approximations is
that some MILP-based cut-generation techniques, such as flow-cover inequalities (Gu et al., 1999)
and knapsack inequalities (Marchand and Wolsey, 1999), can be used directly in QP-diving. We
have not experimented with this option because MINOTAUR currently does not have routines to
generate these cuts.

All experiments were performed on a Linux workstation with a 2.6 GHz Intel Xeon processor,
8 MB cache, and 32 GB RAM. All software was compiled by using GNU compiler version 4.1.2.
BONMIN version 1.5.1 was built with IPOPT version 3.10.1 and HSL libraries. MINOTAUR was
compiled by using the same version of IPOPT. The test problems were taken from the IBM/CMU
collection of test problems (CMU, 2012), and all solvers were run with a time limit of two hours.
When using filterSQP for QP-diving, we had to reload BQPD after every call to solve NLP, because
filterSQP also calls BQPD internally and changes some statically defined variables in it. All zero
dual variables of the initial NLP relaxation were assigned a value of 0.5.

Important metrics from our computational tests are tabulated in Appendix A. Table A.1 re-
ports the time taken to solve each instance and the number of nodes explored. We also report in
Table A.2 the number of NLPs or QPs solved and the time used to solve them by three variants of
MINOTAUR (two branch-and-bound methods and QP-diving). We graphically represent the data
using what we call extended performance-profiles, described next.

4.1 Extended Performance-Profiles

A performance profile (Dolan and Moré, 2002) is a graph representing the relative performance
of different solvers according to a specific metric measured for a given set of problem instances.
We extend the notion of performance profiles to provide a more informative picture of the results.
Since running time is usually the metric of choice, we will use it in the remaining discussion. Other
metrics, such as the number of iterations, can also be used with the same method.

Suppose we are given a set I of problem instances, a set S of solvers, and measured value of
solution times, say tp,s, for each p ∈ I and s ∈ S. The performance ratio is defined as

rp,s =
tp,s

min{tp,i | i ∈ S}
, (4.6)

and a related distribution function ρs(τ) is defined for each solver s ∈ S as

ρs(τ) =
size{p ∈ I | rp,s ≤ τ}

|S|
. (4.7)

Obviously, ρs(τ) ∈ [0, 1] is an increasing function of τ ; in fact, it is cumulative distribution function
for the performance ratio. Dolan and Moré (2002) noted that if the set S is suitably large and

10 Ashutosh Mahajan, Sven Leyffer, and Christian Kirches

representative of the class of problems it contains, ρs(τ) is the probability that solver s is at most
τ times slower than the best-performing solver on a randomly selected instance of that class. In
particular, ρs(1) is the probability that solver s is the fastest for a problem instance, and ρs(4) is
the probability that solver s can solve an instance at most four times slower than any other solver.

One limitation of the performance profile is that it does not tell us the probability that a given
solver s is faster than any other solver by a given factor τ . It gives us only the probability that it is
slower by at most a factor τ . We overcome this limitation by changing the definition of performance
ratio (4.6) to

r̂p,s =
tp,s

min{tp,i | i ∈ S, i 6= s}
(4.8)

and that of the distribution function ρs(τ) to

ρ̂s(τ) =
size{p ∈ I | r̂p,s ≤ τ}

|S|
. (4.9)

We note that by definition (4.6), rp,s ≥ 1 for all p ∈ I, s ∈ S. Consequently, ρs(τ) = 0 when
τ < 1. However, r̂p,s can assume values less than one if solver s is the fastest solver for the instance
p. It also implies ρ̂s(τ) is not necessarily zero when τ < 1. In fact, it follows for our definitions
that when τ < 1, then ρ̂s(τ) is precisely the probability that solver s is faster than any other solver
in S by at least factor 1/τ . For example, ρ̂s(0.25) is the probability that solver s is four times faster
than any other solver in S on a given instance.

Thus, our definition extends the existing definition of performance profile. This fact follows
from observing that size{p ∈ I | r̂p,s ≤ τ} = size{p ∈ I | rp,s ≤ τ} for τ ≥ 1, and thus ρs(τ) =

ρ̂s(τ) when τ ≥ 1, and motivates the term “extended performance-profiles.”
We now consider examples of the two profiles constructed from our experiments; see Figure 2.

Observe that the extended performance-profile looks exactly the same as the performance profile
for τ ≥ 1. In addition, the extended performance-profile indicates that solver “QP-diving-IPOPT”
is faster than the other two solvers by a factor of 2 or more on almost 30% of the instances (or
equivalently, that the probability of its being at least twice as fast as the other two solvers is 0.3).

Before we discuss the results of our computational experiments, we comment on the charac-
teristics of extended performance-profiles.

• The extended performance-profile is, like the performance profile, a nondecreasing, piece-
wise constant function, continuous from the right at each breakpoint.

• The value ρ̂s(1) is the probability that solver s is faster than all other solvers in S.

• limτ↘0 ρ̂s(τ) is the probability that out of all solvers in S, s alone solves an instance.

• If r̂p,s ∈ (0, rM] and if r̂p,s is rM only when instance p is not solved by solver s, then ρ̂s(rM)

is the probability that solver s solves an instance.

Solving MINLPs by QP-Diving 11

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 2 4 8 16 32 64

F
ra

c
ti
o
n
 o

f
In

s
ta

n
c
e
s

Ratio to Fastest

BONMIN-IPOPT
MINOTAUR-IPOPT

QP-diving-IPOPT

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.125 0.25 0.5 1 2 4 8 16 32 64

F
ra

c
ti
o
n
 o

f
In

s
ta

n
c
e
s

Ratio to Fastest

BONMIN-IPOPT
MINOTAUR-IPOPT

QP-diving-IPOPT

Figure 2: Performance profile (left) and extended performance-profile (right) generated by using
the same data.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.125 0.25 0.5 1 2 4 8 16 32 64

F
ra

c
ti
o
n
 o

f
In

s
ta

n
c
e
s

Ratio to Fastest

BONMIN-IPOPT
MINOTAUR-IPOPT

QP-diving-IPOPT
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.125 0.25 0.5 1 2 4 8 16 32 64

F
ra

c
ti
o
n
 o

f
In

s
ta

n
c
e
s

Ratio to Fastest

BONMIN-filterSQP
MINOTAUR-filterSQP

QP-diving-filterSQP

Figure 3: Extended performance-profile comparing time in nonlinear branch-and-bound with QP-
diving using IPOPT (left) and filterSQP (right) as the NLP solver.

4.2 Computational Performance of QP-Diving

Our results are summarized in Figures 3–6. The two profiles in Figure 3 compare the CPU time
of QP-diving with the CPU time for the two branch-and-bound implementations. The left figure
shows the results for IPOPT and the right for filterSQP. We observe that when IPOPT is used as
the NLP solver, QP-diving is the fastest solver on nearly 60% of all the instances and on 80% of all
instances that are solved in two hours. It is at least two times faster than any other solver on 30%
of all instances. The filterSQP solver speeds the performance of the branch-and-bound algorithms
of BONMIN and MINOTAUR, but QP-diving still performs significantly better than the two. It is
fastest among the three on 45% of all instances, and at least two times faster on 25%. A comparison
of all six tests, shown in Figure 4, confirms the superior performance of QP-diving.

Figure 5 shows the comparison based on the number of nodes generated during the tree search.
We observe that the trees generated by QP-diving are often an order of magnitude larger than the

12 Ashutosh Mahajan, Sven Leyffer, and Christian Kirches

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.25 1 4 16 64 256

F
ra

c
ti
o
n
 o

f
In

s
ta

n
c
e
s

Ratio to Fastest

BONMIN-IPOPT
MINOTAUR-IPOPT

QP-diving-IPOPT
BONMIN-filterSQP

MINOTAUR-filterSQP
QP-diving-filterSQP

Figure 4: Extended performance-profile comparing time in nonlinear branch-and-bound with
time in QP-diving.

Solving MINLPs by QP-Diving 13

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.0625 0.25 1 4 16 64

F
ra

c
ti
o
n
 o

f
In

s
ta

n
c
e
s

Ratio to Fewest

BONMIN-IPOPT
MINOTAUR-IPOPT

QP-diving-IPOPT
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.0625 0.25 1 4 16 64

F
ra

c
ti
o
n
 o

f
In

s
ta

n
c
e
s

Ratio to Fewest

BONMIN-filterSQP
MINOTAUR-filterSQP

QP-diving-filterSQP

Figure 5: Extended performance-profile comparing number of nodes in nonlinear branch-and-
bound with QP-diving using IPOPT (left) and filterSQP (right) as the NLP solver.

trees for the two branch-and-bound solvers. The reasons for this inefficiency are discussed in
Section 3. In spite of processing a larger number of nodes, QP-diving outperforms branch-and-
bound in terms of CPU time. The reason for this success is that QP-diving solves every node
significantly faster. For example, the results for RSyn0805M02M (see Table A.2) show that even
though the QP-diving tree is about five times larger than the regular tree, the QP warm-starting
makes it faster overall. This improved per node performance can be seen in Figure 6, where we
compare time spent per NLP node by the three solvers IPOPT, filterSQP, and BQPD. For the first
two, we used the time reported by MINOTAUR branch-and-bound. For BQPD, we used the time
reported by QP-diving with filterSQP. The time for BQPD also includes that spent in reloading QPs
every time cuts are added or filterSQP was called, which we think can be improved significantly.
We observe that BQPD is at least 16 times faster than both NLP solvers on 12% of all instances, 8
times faster on 30%, and 4 times faster on 68%. We expect to see a reduction in tree size and further
improvement in solution time once we experiment with updated QP approximations during the
tree search.

The number of cuts generated is tabulated in Table A.3. When we solved with filterSQP, 18
problems did not see any cuts, 72 saw fewer than 20 cuts, and only 17 saw more than 100 cuts.
We generated more than a thousand cuts for trimloss instances, which suggests that removing
unnecessary cuts and better cut management may be useful for some difficult instances.

5 Conclusions and Future Work

We have presented a new branch-and-bound algorithm that searches the tree by using QP approx-
imations that can be warm-started at every node. We observe favorable numerical performance
compared with a standard nonlinear branch-and-bound algorithm. Our algorithm and its imple-
mentation can be improved in several ways, however. We have already mentioned the problem
of updating the objective function of the QP. Valid inequalities for the integer-constrained QP are

14 Ashutosh Mahajan, Sven Leyffer, and Christian Kirches

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.0625 0.25 1 4 16 64 256

F
ra

c
ti
o
n
 o

f
In

s
ta

n
c
e
s

Ratio to Fastest

IPOPT
filterSQP

bqpd

Figure 6: Extended performance-profile comparing time spent per call to NLP solvers.

valid for the MINLP as well. These inequalities can be added along with the linearizations we
mentioned to get even tighter relaxations. On the implementation side large improvements are
also possible. By redesigning the interfaces for QP solvers, we can avoid loading the whole prob-
lem when we add new inequalities. Methods for warm-starting QPs not just after bound changes
but also when the objective is changed or when constraints are removed or added will also benefit.

An extension of our work is to consider the algorithm in the context of heuristics. One example
would be a local branching heuristic (Fischetti and Lodi, 2003), which can be interpreted as a trust-
region approach. If all integer variables are binary, then we can interpret local branching as adding
a trust region around a current binary point x∗ to (QP(x̂, l, u)):

‖x∗I − xI‖1 ≤ ∆I , ⇔
∑

i∈I:x∗i=0

xi +
∑

i∈I:x∗i=1

(1− xi) ≤ ∆I ,

where ∆ ≥ 1 is an integer that corresponds to the number of bit changes from x∗ to x. Similarly,
we can add a trust region around the continuous variables of the form

‖x∗C − xC‖∞ ≤ ∆C ,

where C is the index set of continuous variables and ∆C > 0 is the continuous trust region radius.
In this case, our approach resembles the SMIQP approach of Exler and Schittkowski (2007). Other
heuristics, such as diving and a feasibility pump, can be extended to solve only QPs in a similar
way.

Solving MINLPs by QP-Diving 15

Acknowledgments

This work was supported by the Office of Advanced Scientific Computing Research, Office of
Science, U.S. Department of Energy, under Contract DE-AC02-06CH11357. This work was also
supported by the U.S. Department of Energy through grant DE-FG02-05ER25694.

References

Abhishek, K., Leyffer, S., and Linderoth, J. T. (2010). FilMINT: An outer-approximation-based
solver for nonlinear mixed integer programs. INFORMS Journal on Computing, 22:555–567.
DOI:10.1287/ijoc.1090.0373.

Achterberg, T., Koch, T., and Martin, A. (2004). Branching rules revisited. Operations Research
Letters, 33:42–54.

Altunay, M., Leyffer, S., Linderoth, J. T., and Xie, Z. (2011). Optimal security response to attacks
on open science grids. Computer Networks, 55:61–73.

Bacher, R. (10-12 December 1997). The Optimal Power Flow (OPF) and its solution by the interior
point approach. EES-UETP Madrid, Short Course.

Bartholomew, E. F., O’Neill, R. P., and Ferris, M. C. (2008). Optimal transmission switching. IEEE
Transactions on Power Systems, 23:1346–1355.

Bertsekas, D. and Gallager, R. (1987). Data Networks. Prentice-Hall, Endlewood Cliffs, NJ.

Bhatia, R., Segall, A., and Zussman, G. (2006). Analysis of bandwidth allocation algorithms for
wireless personal area networks. Wireless Networks, 12:589–603.

Bienstock, D. (1996). Computational study of a family of mixed-integer quadratic programming
problems. Mathematical Programming, 74:121–140.

Bienstock, D. and Mattia, S. (2007). Using mixed-integer programming to solve power grid black-
out problems. Discrete Optimization, 4:115–141.

Bonami, P., Biegler, L. T., Conn, A. R., Cornuéjols, G., Grossmann, I. E., Laird, C. D., Lee, J., Lodi,
A., Margot, F., Sawaya, N., and Wächter, A. (2008). An algorithmic framework for convex mixed
integer nonlinear programs. Discrete Optimization. To appear.

Bonami, P., Lee, J., Leyffer, S., and Waechter, A. (2011). More branch-and-bound experiments in
convex nonlinear integer programming. Preprint ANL/MCS-P1949-0911, Argonne National
Laboratory, Mathematics and Computer Science Division.

Boorstyn, R. and Frank, H. (1977). Large-scale network topological optimization. IEEE Transactions
on Communications, 25:29–47.

16 Ashutosh Mahajan, Sven Leyffer, and Christian Kirches

Borchers, B. and Mitchell, J. E. (1994). An improved branch and bound algorithm for mixed integer
nonlinear programs. Computers & Operations Research, 21:359–368.

Bragalli, C., D’Ambrosio, C., Lee, J., Lodi, A., and Toth, P. (2006). An MINLP solution method for
a water network problem. In Algorithms - ESA 2006 (14th Annual European Symposium. Zurich,
Switzerland, September 2006, Proceedings), pages 696–707. Springer.

Bussieck, M. R. and Drud, A. (2001). SBB: A new solver for mixed integer nonlinear programming.
Talk, OR 2001, Section Continuous Optimization.

Castillo, I., Westerlund, J., Emet, S., and Westerlund, T. (2005). Optimization of block layout deisgn
problems with unequal areas: A comparison of MILP and MINLP optimization methods. Com-
puters and Chemical Engineering, 30:54–69.

Chi, K., Jiang, X., Horiguchi, S., and Guo, M. (2008). Topology design of network-coding-based
multicast networks. IEEE Transactions on Mobile Computing, 7(4):1–14.

CMU (2012). CMU-IBM open source MINLP project. http://egon.cheme.cmu.edu/ibm/page.htm.

Costa-Montenegro, E., González-Castaño, F. J., Rodriguez-Hernández, P. S., and Burguillo-Rial,
J. C. (2007). Nonlinear optimization of IEEE 802.11 mesh networks. In ICCS 2007, Part IV, pages
466–473, Springer Verlag, Berlin.

Dakin, R. J. (1965). A tree search algorithm for mixed programming problems. Computer Journal,
8:250–255.

Dolan, E. and Moré, J. (2002). Benchmarking optimization software with performance profiles.
Mathematical Programming, 91:201–213.

Donde, V., Lopez, V., Lesieutre, B., Pinar, A., Yang, C., and Meza, J. (2005). Identification of severe
multiple contingencies in electric power networks. In Proceedings 37th North American Power
Symposium. LBNL-57994.

Dribeek, N. J. (1966). An algorithm for the solution of mixed integer programming problems.
Management Science, 12:576–587.

Duran, M. A. and Grossmann, I. (1986). An outer-approximation algorithm for a class of mixed-
integer nonlinear programs. Mathematical Programming, 36:307–339.

Eliceche, A. M., Corvalán, S. M., and Martı́nez, P. (2007). Environmental life cycle impact as a tool
for process optimisation of a utility plant. Computers and Chemical Engineering, 31:648–656.

Elwalid, A., Mitra, D., and Wang, Q. (2006). Distributed nonlinear integer optimization for data-
optical internetworking. IEEE Journal on Selected Areas in Communications, 24(8):1502–1513.

Exler, O. and Schittkowski, K. (2007). A trust region SQP algorithm for mixed-integer nonlinear
programming. Optimization Letters, 1:269–280.

Solving MINLPs by QP-Diving 17

Fischetti, M. and Lodi, A. (2003). Local branching. Mathematical Programming, 98:23–47.

Fletcher, R. (1995). User manual for BQPD. University of Dundee.

Fletcher, R. and Leyffer, S. (1994). Solving mixed integer nonlinear programs by outer approxima-
tion. Mathematical Programming, 66:327–349.

Fletcher, R. and Leyffer, S. (1998). User manual for filterSQP. University of Dundee Numerical
Analysis Report NA-181.

Fletcher, R. and Leyffer, S. (2005). MINLP (AMPL input). http://www-neos.mcs.anl.gov/
neos/solvers/MINCO:MINLP-AMPL.

Flores-Tlacuahuac, A. and Biegler, L. T. (2007). Simultaneous mixed-integer dynamic optimization
for integrated design and control. Computers and Chemical Engineering, 31:648–656.

Floudas, C. (1995). Nonlinear and Mixed–Integer Optimization. Topics in Chemical Engineering.
Oxford University Press, New York.

Garver, L. L. (1997). Transmission network estimation using linear programming. IEEE Transac-
tions on Power Apparatus Systems, 89:1688–1697.

Geoffrion, A. (1972). Generalized Benders decomposition. Journal of Optimization Theory and Ap-
plications, 10(4):237–260.

Goldberg, N., Leyffer, S., and Safro, I. (2012). Optimal response to epidemics and cyber attacks
in networks. Preprint ANL/MCS-1992-0112, Argonne National Laboratory, Mathematics and
Computer Science Division.

Grossmann, I. E. (2002). Review of nonlinear mixed-integer and disjunctive programming tech-
niques. Optimization and Engineering, 3:227–252.

Grossmann, I. E. and Kravanja, Z. (1997). Mixed–integer nonlinear programming: A survey of
algorithms and applications. In L.T. Biegler, T.F. Coleman, A. C. and Santosa, F., editors, Large–
Scale Optimization with Applications, Part II: Optimal Design and Control, Springer, New York.

Gu, Z., Nemhauser, G. L., and Savelsbergh, M. W. P. (1999). Lifted flow covers for mixed 0-1
integer programs. Mathematical Programming, 85:439–467.

Guerra, A., Newman, A. M., and Leyffer, S. (2009). Concrete structure design using mixed-integer
nonlinear programming with complementarity constraints. Preprint ANL/MCS-P1869-1109,
Argonne National Laboratory, Mathematics and Computer Science Division. To appear in SIAM
Journal on Optimization.

Gupta, O. K. and Ravindran, A. (1985). Branch and bound experiments in convex nonlinear integer
programming. Management Science, 31:1533–1546.

http://www-neos.mcs.anl.gov/neos/solvers/MINCO:MINLP-AMPL
http://www-neos.mcs.anl.gov/neos/solvers/MINCO:MINLP-AMPL

18 Ashutosh Mahajan, Sven Leyffer, and Christian Kirches

Hedman, K. W., O’Neill, R. P., Fisher, E. B., and Oren, S. S. (2008). Optimal transmission switching
- sensitivity analysis and extensions. IEEE Transactions on Power Systems, 23:1469–1479.

Jobst, N. J., Horniman, M. D., Lucas, C. A., and Mitra, G. (2001). Computational aspects of alterna-
tive portfolio selection models in the presence of discrete asset choice constraints. Quantitative
Finance, 1:489–501.

Karuppiah, R. and Grossmann, I. E. (2006). Global optimization for the synthesis of integrated
water systems in chemical processes. Computers and Chemical Engineering, 30:650–673.

Lee, J. and Leyffer, S., editors (2011). Mixed Integer Nonlinear Programming, IMA Volume in Math-
ematics and its Applications. Springer, New York.

Leyffer, S. (1998). User manual for MINLP-BB. University of Dundee.

Leyffer, S. (2001). Integrating SQP and branch-and-bound for mixed integer nonlinear program-
ming. Computational Optimization & Applications, 18:295–309.

Mahajan, A., Leyffer, S., Linderoth, J., Luedtke, J., and Munson, T. (2011). MINOTAUR: a toolkit for
solving mixed-integer nonlinear optimization. wiki-page. http://wiki.mcs.anl.gov/minotaur.

Marchand, H. and Wolsey, L. (1999). The 0-1 knapsack problem with a single continuous variable.
Mathematical Programming, 85:15–33.

Momoh, J., Koessler, R., Bond, M., Stott, B., Sun, D., Papalexopoulos, A., and Ristanovic, P. (1997).
Challenges to optimal power flow. IEEE Transaction on Power Systems, 12:444–455.

Quesada, I. and Grossmann, I. E. (1992). An LP/NLP based branch–and–bound algorithm for
convex MINLP optimization problems. Computers and Chemical Engineering, 16:937–947.

Quist, A. J., van Gemeert, R., Hoogenboom, J. E., Ílles, T., Roos, C., and Terlaky, T. (1998). Ap-
plication of nonlinear optimization to reactor core fuel reloading. Annals of Nuclear Energy,
26:423–448.

Romero, R., Monticelli, A., Garcia, A., and Haffner, S. (2002). Test systems and mathematical
models for transmission network expansion planning. IEE Proceedings – Generation, Transmission
and Distrbution., 149(1):27–36.

Sheikh, W. and Ghafoor, A. (2010). An optimal bandwidth allocation and data droppage scheme
for differentiated services in a wireless network. Wireless Communications and Mobile Computing,
10(6):733–747.

Sinha, R., Yener, A., and Yates, R. D. (2002). Noncoherent multiuser communications: Multistage
detection and selective filtering. EURASIP Journal on Applied Signal Processing, 12:1415–1426.

Solving MINLPs by QP-Diving 19

Soleimanipour, M., Zhuang, W., and Freeman, G. H. (2002). Optimal resource management
in wireless multimedia wideband CDMA systems. IEEE Transactions on Mobile Computing,
1(2):143–160.

Stubbs, R. and Mehrohtra, S. (2002). Generating convex polynomial inequalities for mixed 0-1
programs. Journal of Global Optimization, 24:311–332.

Wächter, A. and Biegler, L. T. (2006). On the implementation of a primal-dual interior point fil-
ter line search algorithm for large-scale nonlinear programming. Mathematical Programming,
106(1):25–57.

Westerlund, T. and Pettersson, F. (1995). A cutting plane method for solving convex MINLP prob-
lems. Computers and Chemical Engineering, 19:s131–s136.

You, F. and Leyffer, S. (2010). Oil spill response planning with MINLP. SIAG/OPT Views-and-News,
21(2):1–8.

You, F. and Leyffer, S. (2011). Mixed-integer dynamic optimization for oil-spill response planning
with integration of a dynamic oil weathering model. AIChe Journal. Published online: DOI:
10.1002/aic.12536.

The submitted manuscript has been created by the UChicago Argonne, LLC, Operator of Argonne National Laboratory (“Argonne”)
under Contract No. DE-AC02-06CH11357 with the U.S. Department of Energy. The U.S. Government retains for itself, and others
acting on its behalf, a paid-up, nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works,
distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government.

20
A

shutosh
M

ahajan,Sven
Leyffer,and

C
hristian

K
irches

A Numerical Results

Table A.1: Time used (seconds) and nodes processed in branch-and-bound. “-1” denotes a failure.
BONMIN-IPOPT MINOTAUR-IPOPT QP-diving-IPOPT BONMIN-fSQP MINOTAUR-fSQP QP-diving-fSQP

Instance CPU Nodes CPU Nodes CPU Nodes CPU Nodes CPU Nodes CPU Nodes
BatchS101006M 25.86 442 30.93 389 21.25 2383 12.16 446 7.18 397 47.68 5221
BatchS121208M 54.09 600 72.94 601 39.39 4355 31.71 596 90.48 3003 115.64 9585
BatchS151208M 162.81 1792 207.49 1687 145.42 9117 133.83 2229 176.62 4373 409.66 27389
BatchS201210M 222.72 1594 271.37 1366 149.90 8199 194.60 1862 578.76 9627 1173.91 64279
CLay0203H 7.90 212 15.00 192 0.61 107 2.39 219 1.72 289 0.25 85
CLay0203M 3.40 225 10.57 467 4.37 279 0.27 232 0.31 373 0.24 234
CLay0204H 75.17 1477 46.37 1409 5.17 1688 29.85 1516 30.01 1914 2.70 1185
CLay0204M 15.76 1802 35.51 1937 8.26 3073 3.27 1467 0.90 1442 5.90 6254
CLay0205H -1 -1 714.61 12062 92.37 17409 568.35 11697 570.44 12519 86.75 21646
CLay0205M 262.02 18832 391.68 20010 109.93 59550 66.61 16422 22.54 13188 105.14 116801
CLay0303H 28.26 385 51.26 444 0.72 186 5.10 360 6.38 941 0.53 191
CLay0303M 7.04 388 33.92 799 13.12 950 0.70 394 1.25 1123 0.76 734
CLay0304H 202.71 1837 347.30 1906 3.42 645 76.01 2669 159.19 8503 2.18 629
CLay0304M 147.23 2966 925.04 19829 689.51 25178 14.42 4618 89.63 28440 41.39 28074
CLay0305H 2405.67 15549 1952.17 16072 95.76 18574 806.10 15011 850.92 16318 101.71 23094
CLay0305M 554.33 19186 794.91 31440 7200.04 620687 87.78 19371 110.16 25761 1275.79 820646
FLay02H 0.07 0 0.14 7 0.07 7 0.05 0 0.03 7 0.04 7
FLay02M 0.03 0 0.07 7 0.05 7 0.01 0 0.01 7 0.03 7
FLay03H 1.54 100 1.76 106 0.96 127 0.88 110 0.54 104 0.39 127
FLay03M 0.41 98 0.73 103 0.34 117 0.07 102 0.06 103 0.10 125
FLay04H 54.55 2714 51.19 2331 20.93 2745 47.98 2664 35.87 2325 13.90 2775
FLay04M 13.16 2810 21.01 2517 4.78 2711 1.88 2728 1.54 2608 1.36 2721
FLay05H 2739.25 90780 2518.04 76380 1747.91 122253 5536.38 109186 3706.54 83741 1519.38 127595

Solving
M

IN
LPs

by
Q

P-D
iving

21

BONMIN-IPOPT MINOTAUR-IPOPT QP-diving-IPOPT BONMIN-fSQP MINOTAUR-fSQP QP-diving-fSQP
Instance CPU Nodes CPU Nodes CPU Nodes CPU Nodes CPU Nodes CPU Nodes
FLay05M 556.31 96586 571.63 59691 270.13 113867 142.98 106922 100.71 84926 94.78 111250
FLay06H 7201.08 180728 7200.03 173959 7200.01 596312 7200.37 71586 7200.01 81871 7200.14 717942
FLay06M 7201.98 586634 7200.01 634593 7200.00 3093407 7206.75 3666524 7200.00 3962640 7200.00 4804475
RSyn0805H 3.11 44 3.21 57 0.55 109 7.77 44 10.44 124 1.95 219
RSyn0805M 53.11 2703 408.52 22561 8.78 4755 19.62 2481 23.91 3186 8.57 5955
RSyn0805M02H 13.30 14 36.84 194 2.76 85 69.02 14 139.70 199 5.03 89
RSyn0805M02M 2809.94 44330 4157.82 69540 2663.91 282407 2743.36 43878 4099.54 70603 2668.97 330549
RSyn0805M03H 21.22 10 120.68 312 6.28 93 63.97 12 172.55 97 16.84 73
RSyn0805M03M 7199.95 65907 6085.55 64611 7200.03 398622 7199.92 43561 7200.06 58109 7200.02 483792
RSyn0805M04H 20.18 2 120.45 192 6.32 55 64.28 0 179.41 77 8.99 49
RSyn0805M04M 7199.99 37865 7200.12 46303 7200.07 215853 7199.94 21449 7200.12 31897 7200.04 227642
RSyn0810H 3.66 34 4.26 70 0.70 99 3.03 34 5.51 121 0.56 89
RSyn0810M 298.52 14633 2049.95 100471 375.49 219901 82.88 11551 53.74 10341 396.65 237115
RSyn0810M02H 19.23 44 41.22 195 13.22 306 114.66 42 576.28 689 43.23 327
RSyn0810M02M 7200.64 105227 7200.05 108984 7200.02 975065 7200.52 95389 7200.08 102498 7200.01 948103
RSyn0810M03H 67.43 146 214.11 731 39.51 571 319.07 164 2010.71 1313 174.89 836
RSyn0810M03M 7200.46 56490 7200.11 65639 7200.07 884521 7200.19 34041 7200.17 48425 7200.01 808281
RSyn0810M04H 37.21 8 322.60 485 10.48 71 177.53 10 266.34 71 13.57 65
RSyn0810M04M 7200.29 31746 7200.05 38581 7200.02 631915 7199.78 16386 7200.27 24582 7200.02 615599
RSyn0815H 5.21 54 6.16 91 0.87 111 12.17 54 18.40 109 1.43 117
RSyn0815M 7200.15 244605 396.07 18470 1250.07 439858 85.97 8017 84.19 8832 375.44 190051
RSyn0815M02H 14.14 10 65.57 245 3.00 47 62.59 10 110.23 120 6.78 97
RSyn0815M02M 7200.44 53730 7200.07 107343 7200.03 1064957 7200.54 75213 7200.02 84632 7200.01 988018
RSyn0815M03H 61.27 72 285.04 840 21.26 264 381.09 92 1653.43 888 55.19 544
RSyn0815M03M 7200.38 32474 7200.04 60940 7200.06 676874 7200.22 28656 7200.16 35430 7200.02 745400
RSyn0815M04H 49.71 12 385.68 543 27.41 157 291.28 10 1182.66 257 54.97 186
RSyn0815M04M 7200.02 13731 7200.26 34888 7200.07 552280 7199.90 14598 7200.32 19509 7200.02 589701
RSyn0820H 6.08 73 5.31 82 1.10 117 21.16 71 12.59 82 8.87 475
RSyn0820M 7200.13 270531 7200.01 345926 1648.57 548869 989.05 73774 1085.10 83481 935.49 395093
RSyn0820M02H 23.38 42 85.29 285 9.25 175 184.18 28 552.07 382 24.70 183
RSyn0820M02M 7200.84 75454 7200.07 92194 7200.03 1506283 7200.72 67735 7200.11 69394 7200.05 1415701
RSyn0820M03H 98.72 194 509.82 1541 36.89 465 945.25 232 2970.74 1302 100.05 1022
RSyn0820M03M 7200.56 39705 7200.09 51504 7200.02 930856 7199.94 24395 7200.07 31997 7200.01 874957

22
A

shutosh
M

ahajan,Sven
Leyffer,and

C
hristian

K
irches

BONMIN-IPOPT MINOTAUR-IPOPT QP-diving-IPOPT BONMIN-fSQP MINOTAUR-fSQP QP-diving-fSQP
Instance CPU Nodes CPU Nodes CPU Nodes CPU Nodes CPU Nodes CPU Nodes
RSyn0820M04H 122.01 91 978.26 1821 74.80 389 1115.70 96 4408.82 1050 203.62 425
RSyn0820M04M 7200.37 21127 7200.35 29535 7200.02 617815 7199.71 12986 7200.15 16999 7200.02 643890
RSyn0830H 5.33 32 5.45 60 5.10 175 26.29 38 24.26 90 8.68 175
RSyn0830M 7201.61 225135 7200.03 293387 3873.49 1391071 2612.48 151510 2485.99 144708 3299.63 1259559
RSyn0830M02H 31.37 75 139.55 567 23.66 313 380.70 71 307.04 193 77.94 315
RSyn0830M02M 7200.92 67073 7200.07 80827 7200.01 1562498 7200.48 44335 7200.07 43121 7200.03 1424931
RSyn0830M03H 75.57 106 369.02 760 68.89 473 997.47 104 569.31 166 221.39 503
RSyn0830M03M 7200.53 33898 7200.04 39718 7200.02 779706 7199.98 19537 7200.09 18439 -1 -1
RSyn0830M04H 317.03 446 888.47 1222 1011.40 4305 4172.53 450 2114.26 400 3093.12 3901
RSyn0830M04M 7200.47 19749 7200.19 22183 -1 -1 7199.54 9861 7200.63 9071 7200.19 611048
RSyn0840H 3.74 14 3.32 21 0.65 27 16.91 14 9.69 21 1.16 27
RSyn0840M 7201.45 207598 7200.04 228884 7200.01 4014276 7202.24 349553 7200.02 344393 7200.01 4223628
RSyn0840M02H 25.85 36 79.71 219 9.67 101 252.88 36 215.84 89 25.87 101
RSyn0840M02M 7200.84 56582 7200.07 67698 7200.10 1241062 7200.29 35471 7200.15 35989 7200.06 1385347
RSyn0840M03H 89.87 109 533.62 1053 149.08 655 1119.33 96 1445.13 320 725.18 757
RSyn0840M03M 7200.55 31476 7200.08 41184 7200.02 679923 7199.64 13447 7200.30 14924 7200.02 753282
RSyn0840M04H 325.73 423 4319.30 7312 765.52 2382 3955.58 465 3774.68 616 2272.66 2599
RSyn0840M04M 7200.35 19738 7200.32 20077 -1 -1 7199.90 7996 7200.72 6969 -1 -1
SLay04H 0.64 35 1.04 37 0.21 42 0.37 35 0.33 37 0.26 84
SLay04M 0.44 35 0.56 37 0.09 39 0.02 35 0.03 37 0.07 39
SLay05H 1.40 59 2.38 61 0.52 76 1.62 59 1.36 61 0.37 69
SLay05M 0.68 59 1.10 61 0.17 73 0.07 59 0.07 61 0.10 61
SLay06H 3.64 110 4.96 98 1.27 126 6.23 114 4.84 116 1.28 142
SLay06M 1.90 110 2.05 99 0.36 122 0.21 110 0.18 98 0.20 101
SLay07H 8.11 241 10.78 200 4.86 353 20.56 214 12.69 153 3.62 314
SLay07M 3.63 241 3.95 199 0.82 212 0.69 241 0.53 198 0.46 179
SLay08H 13.82 269 19.41 287 8.94 461 47.06 249 36.45 314 8.57 424
SLay08M 5.22 265 6.65 303 1.78 402 1.26 261 1.23 304 1.67 383
SLay09H 27.22 438 33.62 385 33.12 1103 134.18 456 94.30 573 36.36 1122
SLay09M 9.30 387 11.83 397 5.94 924 2.73 367 3.05 512 5.48 847
SLay10H 494.31 7902 332.40 5268 3646.12 41735 2063.80 6561 904.73 5308 6354.45 60083
SLay10M 107.63 6682 96.06 4703 293.45 15621 56.37 6700 43.10 4779 343.12 14333
Syn05H 0.04 0 0.05 3 0.05 5 0.01 0 0.01 1 0.02 1

Solving
M

IN
LPs

by
Q

P-D
iving

23

BONMIN-IPOPT MINOTAUR-IPOPT QP-diving-IPOPT BONMIN-fSQP MINOTAUR-fSQP QP-diving-fSQP
Instance CPU Nodes CPU Nodes CPU Nodes CPU Nodes CPU Nodes CPU Nodes
Syn05M 0.08 6 0.12 11 0.04 11 0.01 6 0.02 11 0.02 11
Syn05M02H 0.04 0 0.15 3 0.05 3 0.02 0 0.06 3 0.05 3
Syn05M02M 0.35 12 0.48 19 0.14 19 0.05 12 0.07 19 0.06 19
Syn05M03H 0.07 0 0.27 5 0.07 5 0.03 0 0.13 5 0.06 5
Syn05M03M 0.54 18 1.01 27 0.17 31 0.22 18 0.24 29 0.11 31
Syn05M04H 0.08 0 0.47 7 0.11 7 0.05 0 0.21 5 0.08 5
Syn05M04M 1.23 32 1.93 41 0.32 45 0.39 32 0.47 43 0.18 45
Syn10H 0.07 0 0.08 3 0.04 3 0.01 0 0.03 3 0.02 3
Syn10M 0.33 30 0.43 35 0.07 35 0.02 30 0.03 35 0.04 35
Syn10M02H 0.09 0 0.40 5 0.09 5 0.10 0 0.55 3 0.09 3
Syn10M02M 3.76 246 5.44 230 1.79 321 1.56 246 1.56 237 0.88 321
Syn10M03H 0.32 0 0.85 9 0.16 9 0.15 0 0.75 9 0.18 9
Syn10M03M 19.82 874 21.50 683 8.84 1353 9.71 874 8.71 670 4.49 1355
Syn10M04H 0.47 0 1.56 13 0.29 13 0.74 0 1.55 11 0.32 13
Syn10M04M 59.10 1946 66.44 1686 26.40 2871 33.83 1932 31.04 1588 14.15 2957
Syn15H 0.09 0 0.09 3 0.06 3 0.03 0 0.06 3 0.04 3
Syn15M 0.67 70 1.07 74 0.28 79 0.11 70 0.12 72 0.10 79
Syn15M02H 0.17 0 0.30 3 0.15 3 0.10 0 0.31 3 0.12 3
Syn15M02M 11.39 466 17.23 635 5.51 839 5.49 466 4.46 410 2.71 837
Syn15M03H 0.46 0 0.65 5 0.27 5 0.21 0 0.93 5 0.28 5
Syn15M03M 67.71 1704 55.40 1392 41.98 3233 36.37 1696 36.36 1465 22.48 3341
Syn15M04H 0.63 0 1.27 7 0.52 7 0.47 0 1.81 7 0.49 7
Syn15M04M 299.98 4814 356.42 6571 840.46 15095 183.36 5064 191.09 4460 293.76 15387
Syn20H 0.12 0 0.21 5 0.09 5 3.61 0 0.50 6 0.10 5
Syn20M 5.94 596 7.81 651 2.07 815 1.26 596 1.24 651 0.71 815
Syn20M02H 0.56 2 1.20 7 0.33 7 1.35 0 2.17 7 0.45 7
Syn20M02M 498.89 16653 406.48 15913 199.99 38587 260.33 16782 237.87 15378 135.95 39563
Syn20M03H 1.99 2 2.61 13 0.58 13 97.33 0 12.31 16 3.01 15
Syn20M03M 7200.13 126172 5881.06 135042 7200.18 287472 3844.12 140565 4385.84 137783 4256.88 448763
Syn20M04H 3.58 2 4.51 15 1.10 19 20.09 0 22.94 21 3.79 19
Syn20M04M 7200.61 69274 7200.04 99467 7200.01 552797 7200.95 149542 7200.04 124616 7200.04 762908
Syn30H 0.51 2 0.35 5 0.28 11 0.90 2 0.31 5 0.19 9
Syn30M 24.47 1914 60.76 3901 28.17 15591 23.38 5141 17.87 3920 16.68 16483

24
A

shutosh
M

ahajan,Sven
Leyffer,and

C
hristian

K
irches

BONMIN-IPOPT MINOTAUR-IPOPT QP-diving-IPOPT BONMIN-fSQP MINOTAUR-fSQP QP-diving-fSQP
Instance CPU Nodes CPU Nodes CPU Nodes CPU Nodes CPU Nodes CPU Nodes
Syn30M02H 1.12 0 1.52 5 0.93 11 3.64 0 2.85 5 1.55 11
Syn30M02M 7201.10 202183 7200.03 203103 7200.08 1257156 7200.96 185612 7200.04 196983 7200.01 1489820
Syn30M03H 5.83 10 4.10 9 2.57 25 28.78 14 13.86 12 6.61 27
Syn30M03M 7201.28 123115 7200.03 130809 7200.02 1093625 7200.68 88018 7200.06 89027 7200.03 1263041
Syn30M04H 18.71 31 10.79 22 10.56 73 108.11 35 34.97 17 23.63 73
Syn30M04M 7201.08 80796 7200.09 67919 7200.01 836133 7200.57 50312 7200.16 49464 7200.14 961396
Syn40H 1.18 10 1.01 12 0.57 21 3.79 10 1.69 12 0.92 25
Syn40M 851.70 59580 833.07 45521 403.55 292019 413.97 59634 314.49 45411 396.31 296455
Syn40M02H 3.42 10 3.19 9 1.86 19 25.03 8 24.96 20 9.90 53
Syn40M02M 7201.46 171069 7200.01 176652 7200.03 1390625 7200.96 112484 7200.05 116418 7200.01 1756859
Syn40M03H 16.39 46 12.38 39 10.82 90 160.67 49 49.92 35 37.29 98
Syn40M03M 7201.09 85865 7200.03 87678 7200.05 992775 7200.59 52030 7200.10 52745 7200.03 1243779
Syn40M04H 62.97 104 43.38 83 145.01 711 459.25 62 172.28 41 302.58 396
Syn40M04M 7200.91 57541 7200.10 62975 -1 -1 7200.40 29991 7200.19 26165 7200.02 662289
Water0202 299.77 24 223.68 35 7304.44 4 -1 -1 1.08 1 1.68 1
Water0202R 4.02 26 1.72 28 3.65 29 0.54 20 0.40 29 4.21 37
Water0303 524.80 56 561.02 82 8562.32 4 -1 -1 1.10 1 1.75 1
Water0303R 457.27 292 31.38 112 109.29 201 16.05 122 4.49 95 110.58 227
fo7 7200.72 271097 7200.00 283924 -1 -1 2615.16 294162 3596.99 497909 -1 -1
fo7 2 5805.85 161263 7200.02 268795 7200.01 4062083 1565.95 162450 3027.16 326312 7200.01 4212973
fo8 7200.76 172196 7200.07 247645 -1 -1 -1 -1 7200.01 409149 7200.01 3356737
fo9 7201.99 273067 7200.03 194816 7200.01 2637864 7201.80 243346 7200.13 227236 7200.00 3043648
o7 7200.86 189167 7200.01 289784 7200.01 4058444 7204.46 1055747 -1 -1 -1 -1
o7 2 7200.78 216050 7200.01 282117 7200.01 6404740 -1 -1 -1 -1 7200.01 5483071
trimloss12 -1 -1 7200.06 136388 7200.09 24091 7200.72 26839 7200.03 62618 7200.18 26855
trimloss2 -1 -1 4.97 425 0.40 385 0.13 392 0.12 441 0.37 385
trimloss4 -1 -1 7200.02 435726 7200.01 2370039 -1 -1 1907.07 1134951 7200.01 2180303
trimloss5 -1 -1 7200.09 434847 7200.03 334711 7204.10 1250587 7200.01 1541004 7200.05 324996
trimloss6 -1 -1 7200.04 348337 7200.01 107098 7202.42 250565 7200.02 321350 7200.28 107726
trimloss7 -1 -1 7200.01 336927 7200.08 108284 7201.93 249881 7200.02 313041 7200.28 105972

Solving
M

IN
LPs

by
Q

P-D
iving

25

Table A.2: NLPs or QPs processed in branch-and-bound and the time (seconds) spent in it. “-1” denotes a failure.
MINOTAUR-IPOPT MINOTAUR-filterSQP QP-diving-filterSQP

Instance CPU NLPs CPU/100NLPs CPU NLPs CPU/100NLPs CPU QPs CPU/100QPs
BatchS101006M 30.88 527 5.8596 7.13 554 1.2870 40.14 5594 0.7176
BatchS121208M 72.84 815 8.9374 90.11 3734 2.4132 107.2 10304 1.0404
BatchS151208M 207.25 1901 10.9022 176.09 5100 3.4527 375.7 28183 1.3331
BatchS201210M 271.15 1628 16.6554 577.41 10654 5.4197 1120.7 65141 1.7204
CLay0203H 15 244 6.1475 1.7 344 0.4942 0.09 194 0.0464
CLay0203M 10.55 513 2.0565 0.29 423 0.0686 0.03 375 0.0080
CLay0204H 46.33 1571 2.9491 29.94 2081 1.4387 2.07 1509 0.1372
CLay0204M 35.45 2059 1.7217 0.84 1581 0.0531 1.58 8583 0.0184
CLay0205H 713.83 12412 5.7511 569.81 12883 4.4230 82.99 22470 0.3693
CLay0205M 390.72 20354 1.9196 21.94 13540 0.1620 45.06 140913 0.0320
CLay0303H 51.25 520 9.8558 6.34 1008 0.6290 0.25 383 0.0653
CLay0303M 33.9 851 3.9835 1.22 1187 0.1028 0.12 1053 0.0114
CLay0304H 347.2 2096 16.5649 158.86 8687 1.8287 1.44 1015 0.1419
CLay0304M 923.94 19993 4.6213 88.73 28597 0.3103 9.1 38449 0.0237
CLay0305H 1951.1 16486 11.8349 849.74 16717 5.0831 97.89 24029 0.4074
CLay0305M 792.88 31821 2.4917 109.03 26151 0.4169 373.1 1002552 0.0372
FLay02H 0.14 15 0.9333 0.01 15 0.0667 0 24 0.0000
FLay02M 0.07 15 0.4667 0 15 0.0000 0 25 0.0000
FLay03H 1.76 130 1.3538 0.52 128 0.4063 0.13 206 0.0631
FLay03M 0.72 127 0.5669 0.04 127 0.0315 0.02 204 0.0098
FLay04H 51.11 2411 2.1199 35.81 2399 1.4927 8.44 3224 0.2618
FLay04M 20.94 2583 0.8107 1.47 2688 0.0547 0.58 3189 0.0182
FLay05H 2513.1 76634 3.2794 3702.66 84023 4.4067 904.94 142240 0.6362
FLay05M 569.58 59954 0.9500 98.36 85202 0.1154 64.33 125540 0.0512
FLay06H 7185.93 174393 4.1205 7193.19 82323 8.7378 5956.76 734123 0.8114
FLay06M 7161.57 635047 1.1277 7074.95 3963082 0.1785 6158.91 5122187 0.1202
RSyn0805H 3.2 95 3.3684 10.42 164 6.3537 0.76 300 0.2533
RSyn0805M 406.97 23005 1.7691 23.79 3394 0.7009 6.03 6173 0.0977
RSyn0805M02H 36.8 560 6.5714 139.65 501 27.8743 2.12 246 0.8618
RSyn0805M02M 4150.67 70446 5.8920 4093.27 71488 5.7258 2508.75 331699 0.7563
RSyn0805M03H 120.63 1126 10.7131 172.49 365 47.2575 4.23 263 1.6084

26
A

shutosh
M

ahajan,Sven
Leyffer,and

C
hristian

K
irches

MINOTAUR-IPOPT MINOTAUR-filterSQP QP-diving-filterSQP
Instance CPU NLPs CPU/100NLPs CPU NLPs CPU/100NLPs CPU QPs CPU/100QPs
RSyn0805M03M 6078.43 65989 9.2113 7192.53 59402 12.1082 6628.28 485316 1.3658
RSyn0805M04H 120.39 694 17.3473 179.35 243 73.8066 4.62 203 2.2759
RSyn0805M04M 7193.41 47909 15.0147 7195.06 33399 21.5427 6799.86 229228 2.9664
RSyn0810H 4.25 114 3.7281 5.48 177 3.0960 0.35 140 0.2500
RSyn0810M 2040.41 100911 2.0220 53.32 10515 0.5071 282.43 237331 0.1190
RSyn0810M02H 41.19 536 7.6847 576.15 1431 40.2621 9.07 548 1.6551
RSyn0810M02M 7186.22 110066 6.5290 7187.64 103536 6.9422 7018.74 949349 0.7393
RSyn0810M03H 213.98 1601 13.3654 2010.41 2149 93.5510 47.53 1356 3.5052
RSyn0810M03M 7189.96 67025 10.7273 7190.87 49661 14.4799 6329.3 810206 0.7812
RSyn0810M04H 322.45 1587 20.3182 266.28 269 98.9888 8.26 250 3.3040
RSyn0810M04M 7192.47 40083 17.9439 7194.63 26100 27.5656 6343.76 617732 1.0269
RSyn0815H 6.15 155 3.9677 18.37 181 10.1492 0.73 204 0.3578
RSyn0815M 394.48 18963 2.0803 83.83 9062 0.9251 282.57 190368 0.1484
RSyn0815M02H 65.52 719 9.1127 110.18 278 39.6331 3.12 256 1.2188
RSyn0815M02M 7187.53 108565 6.6205 7191.1 85846 8.3767 6378.43 990508 0.6440
RSyn0815M03H 284.91 1740 16.3741 1653.21 1669 99.0539 33.12 880 3.7636
RSyn0815M03M 7189.91 62566 11.4917 7193.52 37022 19.4304 6064.74 748126 0.8107
RSyn0815M04H 385.54 1645 23.4371 1182.54 725 163.1090 23.54 393 5.9898
RSyn0815M04M 7192.08 36862 19.5108 7195.89 21127 34.0602 6061.37 592420 1.0232
RSyn0820H 5.3 128 4.1406 12.57 128 9.8203 3.38 648 0.5216
RSyn0820M 7162.67 346452 2.0674 1081.21 83777 1.2906 696.71 405745 0.1717
RSyn0820M02H 85.24 855 9.9696 551.97 975 56.6123 6.74 366 1.8415
RSyn0820M02M 7186.05 93568 7.6800 7189.61 70692 10.1703 6180.68 1417434 0.4360
RSyn0820M03H 509.54 2615 19.4853 2970.4 2174 136.6329 74.21 1593 4.6585
RSyn0820M03M 7190.74 53334 13.4825 7193.56 33565 21.4317 5806.79 877908 0.6614
RSyn0820M04H 977.88 3185 30.7027 4408.46 1965 224.3491 58.4 698 8.3668
RSyn0820M04M 7193.04 31689 22.6989 7195.6 18949 37.9735 6016.09 646899 0.9300
RSyn0830H 5.44 110 4.9455 24.22 144 16.8194 2.05 306 0.6699
RSyn0830M 7171.37 294015 2.4391 2477.78 145092 1.7077 2920.96 1266561 0.2306
RSyn0830M02H 139.47 1121 12.4416 306.97 345 88.9768 15.63 520 3.0058
RSyn0830M02M 7184.2 82405 8.7182 7191.55 44667 16.1004 5436.52 1427348 0.3809
RSyn0830M03H 368.86 1754 21.0296 569.22 362 157.2431 55.26 771 7.1673
RSyn0830M03M 7189.91 41858 17.1769 7194.69 20483 35.1252 -1 -1 -1.0000

Solving
M

IN
LPs

by
Q

P-D
iving

27

MINOTAUR-IPOPT MINOTAUR-filterSQP QP-diving-filterSQP
Instance CPU NLPs CPU/100NLPs CPU NLPs CPU/100NLPs CPU QPs CPU/100QPs
RSyn0830M04H 888.16 2318 38.3158 2114.08 644 328.2733 743.75 4704 15.8110
RSyn0830M04M 7193.09 25065 28.6977 7197.24 11517 62.4923 5952.88 614417 0.9689
RSyn0840H 3.3 63 5.2381 9.66 63 15.3333 0.4 74 0.5405
RSyn0840M 7171.87 229566 3.1241 7177.94 344857 2.0814 4696.04 4224267 0.1112
RSyn0840M02H 79.65 549 14.5082 215.78 239 90.2845 6.74 245 2.7510
RSyn0840M02M 7184.91 69530 10.3335 7192.54 37799 19.0284 5276.23 1387837 0.3802
RSyn0840M03H 533.36 1863 28.6291 1444.99 520 277.8827 134.64 1134 11.8730
RSyn0840M03M 7189.63 43598 16.4907 7195.67 17168 41.9133 5696.8 756594 0.7530
RSyn0840M04H 4317.67 8612 50.1355 3774.39 848 445.0932 669.91 3146 21.2940
RSyn0840M04M 7192.69 23261 30.9217 7197.47 10003 71.9531 -1 -1 -1.0000
SLay04H 1.04 85 1.2235 0.32 85 0.3765 0.16 163 0.0982
SLay04M 0.56 85 0.6588 0.02 85 0.0235 0.01 98 0.0102
SLay05H 2.36 141 1.6738 1.35 141 0.9574 0.24 163 0.1472
SLay05M 1.09 141 0.7730 0.06 141 0.0426 0.02 150 0.0133
SLay06H 4.94 218 2.2661 4.81 236 2.0381 0.92 297 0.3098
SLay06M 2.04 219 0.9315 0.16 218 0.0734 0.08 240 0.0333
SLay07H 10.76 368 2.9239 12.64 321 3.9377 2.91 545 0.5339
SLay07M 3.93 367 1.0708 0.5 366 0.1366 0.22 379 0.0580
SLay08H 19.37 511 3.7906 36.34 538 6.7546 7.03 722 0.9737
SLay08M 6.61 527 1.2543 1.18 528 0.2235 1.02 677 0.1507
SLay09H 33.54 673 4.9837 94.11 861 10.9303 30.91 1601 1.9307
SLay09M 11.78 685 1.7197 2.97 800 0.3713 4.24 1277 0.3320
SLay10H 331.22 5628 5.8852 902.93 5668 15.9303 5920.53 66844 8.8572
SLay10M 95.23 5063 1.8809 42.29 6044 0.6997 321.5 16212 1.9831
Syn05H 0.05 5 1.0000 0 1 0.0000 0 0 0.0000
Syn05M 0.12 17 0.7059 0.01 17 0.0588 0 20 0.0000
Syn05M02H 0.14 9 1.5556 0.04 9 0.4444 0 10 0.0000
Syn05M02M 0.48 43 1.1163 0.05 43 0.1163 0.01 50 0.0200
Syn05M03H 0.27 13 2.0769 0.11 13 0.8462 0.01 14 0.0714
Syn05M03M 1.01 74 1.3649 0.22 76 0.2895 0.03 84 0.0357
Syn05M04H 0.46 17 2.7059 0.19 13 1.4615 0.01 14 0.0714
Syn05M04M 1.92 105 1.8286 0.45 101 0.4455 0.08 111 0.0721
Syn10H 0.07 5 1.4000 0.01 5 0.2000 0 6 0.0000

28
A

shutosh
M

ahajan,Sven
Leyffer,and

C
hristian

K
irches

MINOTAUR-IPOPT MINOTAUR-filterSQP QP-diving-filterSQP
Instance CPU NLPs CPU/100NLPs CPU NLPs CPU/100NLPs CPU QPs CPU/100QPs
Syn10M 0.43 49 0.8776 0.02 49 0.0408 0.01 53 0.0189
Syn10M02H 0.4 17 2.3529 0.54 15 3.6000 0.02 15 0.1333
Syn10M02M 5.42 363 1.4931 1.54 349 0.4413 0.31 458 0.0677
Syn10M03H 0.84 25 3.3600 0.73 25 2.9200 0.05 26 0.1923
Syn10M03M 21.46 991 2.1655 8.67 907 0.9559 2.78 1679 0.1656
Syn10M04H 1.55 33 4.6970 1.53 31 4.9355 0.12 34 0.3529
Syn10M04M 66.34 2220 2.9883 30.94 1982 1.5610 10.42 3502 0.2975
Syn15H 0.09 5 1.8000 0.04 5 0.8000 0.01 6 0.1667
Syn15M 1.06 100 1.0600 0.1 100 0.1000 0.03 120 0.0250
Syn15M02H 0.3 9 3.3333 0.29 9 3.2222 0.04 10 0.4000
Syn15M02M 17.19 789 2.1787 4.43 540 0.8204 1.44 1074 0.1341
Syn15M03H 0.64 13 4.9231 0.91 13 7.0000 0.11 14 0.7857
Syn15M03M 55.33 1680 3.2935 36.27 1841 1.9701 13.53 4194 0.3226
Syn15M04H 1.26 17 7.4118 1.79 17 10.5294 0.23 18 1.2778
Syn15M04M 355.99 7260 4.9034 190.81 5110 3.7341 136.79 21796 0.6276
Syn20H 0.2 11 1.8182 0.48 20 2.4000 0.01 14 0.0714
Syn20M 7.77 685 1.1343 1.21 685 0.1766 0.31 961 0.0323
Syn20M02H 1.19 31 3.8387 2.15 31 6.9355 0.12 33 0.3636
Syn20M02M 405.57 16393 2.4740 237.14 15806 1.5003 102.94 41735 0.2467
Syn20M03H 2.59 43 6.0233 12.28 46 26.6957 0.33 47 0.7021
Syn20M03M 5868.72 135790 4.3219 4376.53 138450 3.1611 2807.26 504477 0.5565
Syn20M04H 4.5 51 8.8235 22.91 77 29.7532 0.68 57 1.1930
Syn20M04M 7190.6 100530 7.1527 7186.2 125636 5.7199 5167.99 795034 0.6500
Syn30H 0.34 13 2.6154 0.29 13 2.2308 0.06 28 0.2143
Syn30M 60.57 4049 1.4959 17.73 4068 0.4358 12.7 17256 0.0736
Syn30M02H 1.51 29 5.2069 2.82 29 9.7241 0.49 57 0.8596
Syn30M02M 7181.16 203929 3.5214 7185.45 197799 3.6327 5620.78 1516954 0.3705
Syn30M03H 4.08 49 8.3265 13.83 56 24.6964 1.71 88 1.9432
Syn30M03M 7183.31 132063 5.4393 7187.22 90149 7.9726 4983.96 1280041 0.3894
Syn30M04H 10.76 82 13.1220 34.93 75 46.5733 6.02 169 3.5621
Syn30M04M 7188.7 69533 10.3385 7190.64 50946 14.1142 5270.33 972788 0.5418
Syn40H 1 30 3.3333 1.68 30 5.6000 0.23 67 0.3433
Syn40M 830.75 45807 1.8136 312.89 45697 0.6847 379.56 297141 0.1277

Solving
M

IN
LPs

by
Q

P-D
iving

29

MINOTAUR-IPOPT MINOTAUR-filterSQP QP-diving-filterSQP
Instance CPU NLPs CPU/100NLPs CPU NLPs CPU/100NLPs CPU QPs CPU/100QPs
Syn40M02H 3.18 43 7.3953 24.93 80 31.1625 3.76 244 1.5410
Syn40M02M 7176.68 177780 4.0368 7184.83 117500 6.1147 5266.25 1788507 0.2944
Syn40M03H 12.35 99 12.4747 49.88 87 57.3333 7.75 205 3.7805
Syn40M03M 7186.28 89366 8.0414 7191.61 54197 13.2694 5126.67 1252050 0.4095
Syn40M04H 43.34 229 18.9258 172.22 181 95.1492 79.05 1190 6.6429
Syn40M04M 7187.6 64973 11.0624 7193.96 28049 25.6478 5190.23 672185 0.7721
Water0202 222.04 49 453.1429 0.04 1 4.0000 0 0 0.0000
Water0202R 1.61 42 3.8333 0.28 43 0.6512 0.32 70 0.4571
Water0303 559.17 110 508.3364 0.04 1 4.0000 0 0 0.0000
Water0303R 30.92 140 22.0857 4.04 123 3.2846 6.36 308 2.0649
fo7 7179.72 284178 2.5265 3576.27 498163 0.7179 -1 -1 -1.0000
fo7 2 7181.68 269067 2.6691 3013.1 326560 0.9227 6985.57 4213347 0.1658
fo8 7179.75 248009 2.8950 7164.85 409499 1.7497 6995.81 3357262 0.2084
fo9 7177.68 195312 3.6750 7181.28 227694 3.1539 7036.66 3044255 0.2311
o7 7180.44 290050 2.4756 -1 -1 -1.0000 -1 -1 -1.0000
o7 2 7182.01 282389 2.5433 -1 -1 -1.0000 6930.25 5483470 0.1264
trimloss12 7161.7 138748 5.1617 7188.03 64071 11.2189 6074.63 30266 20.0708
trimloss2 4.94 467 1.0578 0.09 472 0.0191 0.03 460 0.0065
trimloss4 7169.9 436232 1.6436 1860.57 1135146 0.1639 4810.83 2181575 0.2205
trimloss5 7153.55 435671 1.6420 7116.22 1541287 0.4617 5881.42 327623 1.7952
trimloss6 7167.93 350113 2.0473 7162.59 321839 2.2255 6275.52 110754 5.6662
trimloss7 7155.98 338703 2.1128 7164.74 313530 2.2852 6302.24 108985 5.7827

30 Ashutosh Mahajan, Sven Leyffer, and Christian Kirches

Table A.3: Number of cuts added in QP-diving with IPOPT and filterSQP solvers. “-1” denotes a
failure.

Instance IPOPT fSQP
BatchS101006M 35 40
BatchS121208M 19 67
BatchS151208M 114 19
BatchS201210M 22 8
CLay0203H 145 141
CLay0203M 37 49
CLay0204H 308 286
CLay0204M 58 62
CLay0205H 504 597
CLay0205M 79 86
CLay0303H 234 238
CLay0303M 49 87
CLay0304H 387 371
CLay0304M 93 126
CLay0305H 591 753
CLay0305M 96 198
FLay02H 10 10
FLay02M 8 12
FLay03H 21 23
FLay03M 20 24
FLay04H 34 36
FLay04M 37 35
FLay05H 104 85
FLay05M 114 88
FLay06H 182 143
FLay06M 228 216
RSyn0805H 1 2
RSyn0805M 11 12
RSyn0805M02H 10 8
RSyn0805M02M 28 30
RSyn0805M03H 6 5
RSyn0805M03M 35 36
RSyn0805M04H 3 3
RSyn0805M04M 56 51
RSyn0810H 1 0
RSyn0810M 10 10
RSyn0810M02H 8 11
RSyn0810M02M 33 35
RSyn0810M03H 13 12
RSyn0810M03M 51 52
RSyn0810M04H 19 18
RSyn0810M04M 79 84
RSyn0815H 1 8
RSyn0815M 22 21

Instance IPOPT fSQP
RSyn0815M02H 7 8
RSyn0815M02M 38 38
RSyn0815M03H 14 13
RSyn0815M03M 64 58
RSyn0815M04H 9 11
RSyn0815M04M 71 77
RSyn0820H 6 7
RSyn0820M 22 22
RSyn0820M02H 11 11
RSyn0820M02M 42 38
RSyn0820M03H 17 23
RSyn0820M03M 59 59
RSyn0820M04H 20 22
RSyn0820M04M 78 75
RSyn0830H 2 2
RSyn0830M 14 14
RSyn0830M02H 8 8
RSyn0830M02M 20 19
RSyn0830M03H 12 10
RSyn0830M03M 27 -1
RSyn0830M04H 19 16
RSyn0830M04M -1 36
RSyn0840H 1 1
RSyn0840M 15 17
RSyn0840M02H 2 2
RSyn0840M02M 22 25
RSyn0840M03H 10 16
RSyn0840M03M 43 43
RSyn0840M04H 14 12
RSyn0840M04M -1 -1
SLay04H 8 23
SLay04M 7 6
SLay05H 8 8
SLay05M 8 7
SLay06H 15 18
SLay06M 14 15
SLay07H 44 47
SLay07M 29 25
SLay08H 59 53
SLay08M 52 56
SLay09H 103 105
SLay09M 93 97
SLay10H 1405 1343
SLay10M 794 762

Solving MINLPs by QP-Diving 31

Instance IPOPT fSQP
Syn05H 0 0
Syn05M 1 1
Syn05M02H 0 0
Syn05M02M 1 1
Syn05M03H 0 0
Syn05M03M 4 4
Syn05M04H 0 0
Syn05M04M 5 5
Syn10H 0 0
Syn10M 1 1
Syn10M02H 0 0
Syn10M02M 21 21
Syn10M03H 0 0
Syn10M03M 54 55
Syn10M04H 0 0
Syn10M04M 58 57
Syn15H 0 0
Syn15M 9 9
Syn15M02H 0 0
Syn15M02M 13 13
Syn15M03H 0 0
Syn15M03M 18 18
Syn15M04H 0 0
Syn15M04M 51 37
Syn20H 0 6
Syn20M 11 12
Syn20M02H 0 0
Syn20M02M 42 42
Syn20M03H 0 0
Syn20M03M 68 66
Syn20M04H 0 0
Syn20M04M 88 88

Instance IPOPT fSQP
Syn30H 6 7
Syn30M 23 23
Syn30M02H 4 4
Syn30M02M 48 46
Syn30M03H 12 12
Syn30M03M 68 64
Syn30M04H 18 15
Syn30M04M 93 88
Syn40H 7 7
Syn40M 27 27
Syn40M02H 1 8
Syn40M02M 35 36
Syn40M03H 19 18
Syn40M03M 67 70
Syn40M04H 11 11
Syn40M04M -1 79
Water0202 1 0
Water0202R 6 8
Water0303 0 0
Water0303R 14 28
fo7 -1 -1
fo7 2 72 73
fo8 -1 98
fo9 80 91
o7 57 -1
o7 2 71 76
trimloss12 2318 2998
trimloss2 32 32
trimloss4 1011 979
trimloss5 2434 2421
trimloss6 2926 3071
trimloss7 2954 3048

	Introduction
	QP-Diving for Mixed-Integer Nonlinear Programs
	Extensions of QP-Diving
	Numerical Experiments
	Extended Performance-Profiles
	Computational Performance of QP-Diving

	Conclusions and Future Work
	Numerical Results

